Algebra 2

4-02 Factor and Solve Polynomial Equations (4.4)

How to Factor

1. Greatest Common Factor

- Comes from the \qquad property
- If the \qquad number or variable is in each of the terms, you can bring the number to the \qquad times everything that is left.

$$
3 x^{2} y+6 x y-9 x y^{2}
$$

- Look for this \qquad

2. Check to see how many terms
a. Two terms (formulas)

- Difference of Squares: $a^{2}-b^{2}=(a-b)(a+b)$

$$
9 x^{2}-y^{4}
$$

- Sum of Two Cubes: $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$8 x^{3}+27$
- Difference of Two Cubes: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

$$
y^{3}-8
$$

b. Three terms (General Trinomials $\rightarrow a x^{2}+b x+c$)
i. Write two sets of parentheses ()()
ii. Guess and Check
iii. The Firsts multiply to make $a x^{2}$
iv. The Lasts multiply to make c
v. The Outers + Inners make $b x$
$x^{2}+7 x+10 \quad 6 x^{2}-7 x-20$
c. Four terms (Grouping)
i. Group the terms into sets of two so that you can factor a common factor out of each set
ii. Then factor the factored sets (Factor twice)
$b^{3}-3 b^{2}-4 b+12$

3. Try factoring more!

Created by Richard Wright - Andrews Academy
$a^{2} x-b^{2} x+a^{2} y-b^{2} y$

$$
3 a^{2} z-27 z
$$

$n^{4}-81$

Solving Equations by Factoring

1. Make \qquad
2. \qquad
. Make each factor \qquad because if one factor is zero, 0 time anything $=0$

$$
2 x^{5}=18 x
$$

180 \#1, 5, 9, 13, 17, 21, 25, 29, 33, 49, 53, 188 \#1, 3, 5, 7, Mixed Review $=20$

